One formula sheet allowed. All problems carry equal weight.
Given: November 23, 1998

Problem 1:
Consider binary signaling through an additive white Gaussian noise channel. The spectral density of the noise is known from measurements to be equal to \(N_0 / 2 = 10^{-12} \). The received signal is given by
\[
r(t) = s_i(t) + n(t), \quad 0 \leq t \leq T, \quad i = 1,2
\]
where the two modulation signals are given in the figure below:

![Diagram of modulation signals](image)

The received signal amplitude \(A \) (which is a function of the transmitted power and distance to the receiver among other things) is known to be limited to, \(A \leq 0.001 \), and \(B \) and \(C \) are design parameters. If an error-rate of not more than \(10^{-6} \) is desired, what is the theoretically maximum bit-rate achievable under the above constraints? In designing for the appropriate error-rate you can use the Chernoff-bound to the error-probability. Show your work.

_______________________________Solution_______________________________

For the above two signals, the best performance (which is needed for maximum bit-rate) is obtained when the signals become orthogonal. This happens when \(B=C=T/2 \). For orthogonal signals, the Chernoff bound implies
\[
e^{-\frac{E}{2N_0}} \leq 10^{-6} \Rightarrow E \geq 12 \ln(10) \cdot N_0 = 24 \ln(10) \cdot 10^{-12}
\]
We have
\[
E = A^2 T / 2 \geq 24 \ln(10) \cdot 10^{-12} \Rightarrow
\]
\[
R = \frac{1}{T} \leq \frac{A^2}{48 \ln(10) \cdot 10^{-12}} \leq \frac{10^{-6}}{48 \ln(10) \cdot 10^{-12}} = 9047.8 \text{ bps}
\]
Problem 2:
Consider the following **orthonormal** vectors \(\varphi_1(t), \varphi_2(t) \) and \(\varphi_3(t) \):

![Orthogonal Vectors](image)

(a) Find the signal-space representations of the following two signals:

![Signal Waveforms](image)

(b) For \(T=1 \), plot the waveforms corresponding to the following two signal-space representations: \(x = (1 \ 1 \ 1) \), \(y = (-1 \ 0 \ 1) \).

Solution

(a) In order to make the 3 signals orthonormal, their peak amplitude must equal \(1/\sqrt{T} \). Then:

\[
\begin{align*}
 s_{11} &= \int_0^T s_1(t) \cdot \varphi_1(t) \, dt = \sqrt{T} \cdot \frac{1}{2} \\
 s_{12} &= \int_0^T s_1(t) \cdot \varphi_2(t) \, dt = \sqrt{T} \cdot \frac{1}{2} \\
 s_{13} &= \int_0^T s_1(t) \cdot \varphi_3(t) \, dt = 0 \\
 \Rightarrow s_1 &= \sqrt{T} \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \\
 s_{21} &= \int_0^T s_2(t) \cdot \varphi_1(t) \, dt = 0 \\
 s_{22} &= \int_0^T s_2(t) \cdot \varphi_2(t) \, dt = \sqrt{T} \cdot \frac{1}{2} \\
 s_{23} &= \int_0^T s_2(t) \cdot \varphi_3(t) \, dt = \sqrt{T} \cdot \frac{1}{2} \\
 \Rightarrow s_2 &= \sqrt{T} \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}
\]

(b)
Problem 3:
Consider the two constellations A and B below, where in constellation A neighboring signals are at a distance x from one-another.

a) For high signal-to-noise ratios, and for the same average energy per bit, compare constellation A to constellation B and determine how many dB one is better than the other.

b) Repeat the comparison in a), but now for the same peak-energy per bit, instead of the same average energy per bit.

Solution

a)
$$E_A = \frac{5}{4} x^2 \quad \left(d_{\min} \right)^2 = x^2 \Rightarrow \left(d_{\min} \right)^2 = \frac{4}{5} E_A$$

$$E_B = \frac{3}{4} r^2 \quad \left(d_{\min} \right)^2 = r^2 \Rightarrow \left(d_{\min} \right)^2 = \frac{4}{3} E_B$$

Thus, for the same average energy, constellation B is better than constellation A by

$$10\log_{10} \left(\frac{4 E_B}{3 E_A} \right) = 10\log_{10} \left(\frac{5}{3} \right) \approx 2.2 \text{ dB}$$

b)
$$E_{pA} = \frac{9}{4} x^2 \Rightarrow \left(d_{\min} \right)^2 = \frac{4}{9} E_{pA}$$

$$E_{pB} = r^2 \Rightarrow \left(d_{\min} \right)^2 = E_{pB}$$

Thus, constellation B is better than constellation A for the same peak power by

$$10\log_{10} \left(\frac{1}{4} \right) = 3.52 \text{ dB}$$
Problem 4:
Consider 4-ary signaling over an additive white Gaussian noise (AWGN) channel of spectral density $N_0/2$:

$$r(t) = s_i(t) + n(t), \quad i = 1, 2, 3, 4, \quad 0 \leq t \leq T.$$

The four modulation signals are as described in the figure below:

a) Design the simplest possible receiver that processes the received data to make an optimum symbol decision. Explain all important steps.

b) Derive the Union-Chernoff bound to the performance of the optimum receiver above.

Solution

a) All signals have the same energy, so a simple correlation receiver is optimum:

$$\max_{i=1,2,3,4} \int_0^T r(t)s_i(t)dt = \frac{iT}{4} \int (i-1)T/4 r(t)dt$$

The four likelihood statistics can be simply computed by passing $r(t)$ through a filter matched to a rectangular pulse of duration $T/4$ and then sampling its output at $0, T/4, T/2$ and $3T/4$.

b)

$$P(e) \leq 3e^{\frac{d^2}{4N_0}} = 3e^{\frac{A^2}{8N_0}}$$