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ABSTRACT

Recently, profile context-sensitive HMMs (profile-csHMMs) have
been proposed which are very effective in modeling the common
patterns and motifs in related symbol sequences. Profile-csHMMs
are capable of representing long-range correlations between distant
symbols, even when these correlations are entangled in a compli-
cated manner. This makes profile-csHMMs an useful tool in com-
putational biology, especially in modeling noncoding RNAs (ncR-
NAs) and finding new ncRNA genes. However, a profile-csHMM
based search is quite slow, hence not practical for searching a large
database. In this paper, we propose a practical scheme for making
the search speed significantly faster without any degradation in the
prediction accuracy. The proposed method utilizes a pre-screening
filter based on a profile-HMM, which filters out most sequences that
will not be predicted as a match by the original profile-csHMM. Ex-
perimental results show that the proposed approach can make the
search speed eighty times faster.

Index Terms— homology search, profile-csHMM, pseudoknot,
noncoding RNA (ncRNA), context-sensitve HMM (csHMM).

1. INTRODUCTION

Modeling the common patterns and motifs in a set of related sym-
bol sequences has been a problem of practical importance in various
applications. The statistical model that reflects the key features of
the given set can be used for finding similar sequences in a large
database. This approach has been especially popular in computa-
tional biology, where it has been used for identifying new members
in a known biological sequence family, such as protein-coding genes
and noncoding RNAs (ncRNAs) [1]. This is typically called asim-
ilarity searchor ahomology search, and it has played a crucial role
in the fast annotation of various genomes that have been obtained as
a result of many genome sequencing projects.

A typical way of performing a similarity search is as follows.
Firstly, we align the given symbol sequences based on their similar-
ity. There exist various algorithms that can find a reasonably good
multiple sequence alignment in an efficient manner [2]. The result-
ing alignment reveals the regions that are well conserved among dif-
ferent sequences, and we can also estimate the observation probabil-
ities of different symbols at distinct positions. Based on the multiple
alignment, we can build a statistical model that represents the “con-
sensus sequence”, or a “probabilistic profile”, of the given sequence
family. Once we have constructed the statistical model, it can be
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used to search a large database in order to find high-scoring regions,
which are candidates for new members in the given sequence family.

Profile hidden Markov models (profile-HMMs), which are a sub-
class of HMMs with a linear repetitive structure, have been espe-
cially popular in building probabilistic profiles of protein sequences
and protein-coding genes [1, 3]. Profile-HMMs are well-known for
their efficiency in modeling the correlations between adjacent sym-
bols, and they can be easily constructed from multiple sequence
alignments. As a result, many protein-coding gene-finders are built
on profile-HMMs and other variants of HMMs.

One problem of profile-HMMs is that their application is lim-
ited to sequences with a linear correlation structure. Correlations
between distant symbols that are intertwined in a complicated way
cannot be described using HMMs, as they do not satisfy the Markov
property. For example, many ncRNAs have symbol correlations that
appear in a nested manner, and sometimes, they even contain corre-
lations that cross each other [6]. These sequences cannot be effec-
tively represented by profile-HMMs. However, we can use thepro-
file context-sensitive HMMs(profile-csHMMs) in such cases, which
have been recently proposed [4]. Unlike most conventional mod-
els, including profile-HMMs and stochastic context-free grammars
(SCFGs) that have been especially popular in computational biol-
ogy [1], profile-csHMMs are capable of modelinganykind of pair-
wise symbol correlations. To the best of our knowledge, they are the
first statistical model that can be practically used for representing
and recognizing any kind of RNA pseudoknots.1

Unfortunately, the decoding algorithm for profile-csHMMs has
a relatively high computational complexity due to the large descrip-
tive power of the model [4]. This makes the profile-csHMM imprac-
tical for searching a large database, as the amount of time it takes for
searching a huge database (e.g. the human genome has around three
billion bases) can be prohibitively large.

In this paper, we propose a practical method for expediting a
profile-csHMM based search. The proposed approach uses an ef-
ficient pre-screening filter based on a profile-HMM, which is con-
structed from the original profile-csHMM. This pre-screening filter
will eliminate most sequences that will not be predicted as a “match”
by the original profile-csHMM. Only a small fraction of sequences
that passes this filter will be handed over to the profile-csHMM in
the second stage. This can make the search significantly faster with-
out sacrificing the prediction accuracy. The paper is organized as
follows. We begin with a brief review of profile-csHMMs in the fol-
lowing section. Then we describe the proposed scheme in Sec. 3, and
elaborate on how we should construct the pre-screening filter. Ex-
perimental results are shown in Sec. 4 to demonstrate the proposed
idea.

1Pseudoknots are RNA sequences with crossing correlations [1].
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Fig. 1. An example of a profile-csHMM. (a) Multiple sequence
alignment of five RNA sequences. Note that these RNAs have two
base-pairs. (b) An ungapped profile-csHMM constructed from the
alignment. (c) The final structure of the profile-csHMM that allows
additional insertions and deletions at any location.

2. REVIEW OF PROFILE CONTEXT-SENSITIVE HMM

As the profile-HMMs are a subclass of HMMs with a linear repeti-
tive structure, profile context-sensitive HMMs [4] are a subclass of
context-sensitive HMMs (csHMMs), whose structure is similar to
that of profile-HMMs. Context-sensitive HMMs are extensions of
conventional HMMs, which have variable emission and transition
probabilities that depend on the context [5]. This context-dependency
increases the descriptive capability of the model significantly. Profile-
csHMMs repetitively use three kinds of states, i.e.,match statesMk,
insert statesIk, anddelete statesDk, to represent the distinct sym-
bol emission probabilities at different locations and to model inser-
tions and/or deletions at any position. In order to see how a profile-
csHMM works, let us consider constructing a profile-csHMM from
the sequence alignment shown in Fig. 1 (a). In this example, five
RNAs are aligned to each other.2 For simplicity, we assume that all
RNAs have the same length and there is no gap in the alignment.

2.1. Constructing an ungapped profile-csHMM

As the average length of the RNAs is five, we first construct anun-
gappedprofile-csHMM using five match statesM1, M2, . . . , M5.
This is illustrated in Fig. 1 (b). Each match stateMk represents
the relative occurrences of distinct symbols at thek-th position. For
example, as all the RNAs have an ‘A’ in the third position, we can
adjust the emission probability ofM3 such that is emits ‘A’ with a
high probability (or possibly, with probability one). One interesting
thing that we can see in Fig. 1 (a) is that there exist pairwise corre-
lations between non-adjacent symbols. For example, if there is an
‘A’ in the first position, it is followed by a ‘U’ in the fourth position,
and if there is a ‘G’ in the first position, there will be a ‘C’ in the

2An RNA can be simply viewed as sequence of four symbols (or bases)
A, C, G, and U, which are read from the so-called 5’-end to the 3’-end.

fourth position.3 Such pairwise correlations between distant sym-
bols are frequently observed in RNA sequences due to the so-called
RNA secondary structures[1, 6]. In order to model the correlation
between the first symbol and the fourth symbol, we use apairwise-
emission statefor M1 and acontext-sensitive statefor M4. When
we enterM1, it emits a symbol according to the specified emission
probabilities and stores the symbol in the auxiliary memory dedi-
cated to the state-pairM1 andM4. Afterwards, when we enter the
corresponding context-sensitive stateM4, it first reads the symbolx
stored in the memory. The emission probabilities ofM4 are adjusted
based on the value ofx, such that it emits the complimentary sym-
bol of x. Similarly, we use a pairwise-emission state forM2 and a
context-sensitive state forM5 to model the correlation between the
second and the fifth symbols. As the symbol in the third position is
not correlated to any other symbol, we use asingle-emission state
for M3.

2.2. Modeling insertions and deletions

In order to allow additional insertions and deletions in the original
alignment, we add insert statesIk and delete statesDk to the un-
gapped model that has been obtained from the alignment. The in-
sert stateIk is used to represent the case when a symbol is inserted
between positionsk − 1 andk in the original alignment. We use
a single-emission state forIk, since inserted symbols are usually
not correlated to any other symbol. Unlike the match states and the
delete states, the insert states are allowed to make self-transitions in
order to model multiple insertions. The delete stateDk is used to
represent the case when thek-th symbol in the original alignment is
not present in the observed symbol sequence. Sometimes, the obser-
vation sequence may be shorter than the average length of the align-
ment that was used to construct the profile-csHMM. In such cases,
there will be one or more gaps when we align the observed sequence
to the given alignment. Each of these gaps are modeled using the
delete states. Note thatDk is a non-emitting state that is simply
used as a place-holder to interconnect other states. Fig. 1 (c) shows
the final structure of the profile-csHMM after adding the insert states
and delete states to the ungapped profile-csHMM in Fig. 1 (b).

2.3. Searching for similar sequences

Once we have constructed the profile-csHMM that reflects the com-
mon characteristics of the sequences in the given alignment, we can
use this model to look for ‘similar’ sequences in a database. An
essential problem in performing a similarity search is how we can
quantitatively measure the similarity between a new observed se-
quence and the statistical model at hand. A widely used approach is
to compute the optimal probability of the observation based on the
given model, and use it as a similarity measure. Letx = x1 . . . xL

be an observed symbol sequence and let us denote its underlying
state sequence asy = y1 . . . yLs . Note that the length of the state se-
quenceLs can be larger than the lengthL of the observed sequence,
when there exist deleted symbols. We also defineΘ, which is the set
of model parameters of the profile-csHMM at hand. The similarity
scoreS(x, Θ) between the observationx and the profile-csHMM
can be computed as follows

S(x, Θ) = max
y

S(x,y|Θ) = S(x,y∗|Θ), (1)

whereS(x,y|Θ) is the score forx whose underlying state sequence
is y. Note thaty∗ is the optimal state sequence that maximizes the

3A and U (and also C and G) can form a hydrogen-bonded base-pair,
hence these bases are said to be complementary to each other.



similarity scoreS(x,y|Θ). If this similarity score is larger than a
predefined thresholdλ such thatS(x, Θ) ≥ λ, we can view the
observed sequence as a good candidate that is likely to be a new
member of the same sequence family. On the contrary, ifS(x, Θ) <
λ, we can conclude thatx is unlikely to be a member of the given
family. Therefore, when we search a database to find new members,
only those sequences that satisfyS(x, Θ) ≥ λ will be reported as a
“match”.

When using profile-csHMMs to represent sequence families, we
can utilize thesequential component adjoining (SCA) algorithm[4]
for finding y∗ and computingS(x, Θ). The SCA algorithm is the
counterpart of the Viterbi algorithm, which can be used for decod-
ing profile-csHMMs. The computational complexity of the SCA al-
gorithm is variable, and it depends on the correlation structure of
the profile-csHMM [4]. For example, the complexity for computing
S(x, Θ) for typical RNA pseudoknots ranges betweenO(L4) and
O(L6), which can be very large for long RNA sequences.

3. FAST SEARCH USING PRE-SCREENING FILTERS

One advantage of using profile-csHMMs in a similarity search is the
increased specificity. When computing the similarity score, profile-
csHMMs combine contributions from sequence similarity as well as
structural similarity (in terms of symbol correlations). This makes it
possible to reject false candidates that look similar to the reference
sequences in the sequence-level, but do not preserve the original cor-
relation structure.

However, when performing a similarity search, there will be typ-
ically many sequences that look very different from the reference se-
quences in the sequence-level, such that their similarity scores can-
not exceed the thresholdλ even after combining the contributions
from their structural similarity. As the measure of sequence-level
similarity can be quickly computed using a simpler model, such as
the profile-HMM, we do not have to use a profile-csHMM in such
cases.

Based on this observation, we propose a practical strategy that
can make the database search much faster, compared to the search
based on profile-csHMM alone.4 The proposed approach is as fol-
lows. In the first place, we construct a pre-screening filter using
a profile-HMM. The profile-HMM will have the same size as the
original profile-csHMM, and its model parametersΘp will be de-
rived from the parametersΘ of the profile-csHMM. When given a
new observation sequence, we first compute the sequence-level sim-
ilarity scoreSp(x, Θp) using the pre-screening filter. This score is
compared with a new thresholdλp to decide whether the overall
similarity scoreS(x, Θ) can exceed the original thresholdλ after
combining the contributions from the structural similarity. If this
is possible, the sequence is handed over to the full-blown profile-
csHMM to computeS(x, Θ). Otherwise, the observation will be
rejected. The overall algorithm is illustrated in Fig. 2.

3.1. Constructing the pre-screening filter

Now the question is how to choose the model parameters of the
profile-HMM and how we should choose the thresholdλp so that
there will be no degradation in the prediction accuracy. In order to
answer this question, let us first define several notations. Firstly, we

4This is conceptually similar to the approach proposed in [7] that was
used to expedite a CM (covariance model) search. CMs can be viewed as
profile-SCFGs (stochastic context-free grammars) that can represent nested
correlations but not crossing correlations [1].
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Fig. 2. Illustration of the proposed algorithm.

define the setK = {k|Mk is a context-sensitive state}. At single-
emission states and pairwise-emission states, we denote the emis-
sion score of a symbolx at statev asse(x|v). At context-sensitive
states, the emission score of a symbolxc at statev is denoted as
se(xc|v, xp), wherexp is the symbol that was previously emitted at
the corresponding pairwise-emission state. A typical choice of the
emission scores would be the logarithm of the emission probabilities,
but we can also use other scoring schemes. The transition score from
statev to statew is defined asst(v, w|m) for w = Dk, Mk, Ik−1,
wherek ∈ K. The variablem ∈ {0, 1} indicates whether the mem-
ory associated with the context-sensitive stateMk is empty(m = 0)
or not (m = 1). For all otherw, the transition score is simply de-
fined asst(v, w). A typical choice for the transition scores would
be the logarithm of the transition probabilities, but we can also use
other scores.

Based on the parameters of the original profile-csHMM defined
above, we choose the parameters of the pre-screening filter as fol-
lows. In the first place, the emission scores are chosen as

sp
e(x|v) =

(
minxp [se(x|v, xp)] for v = Mk (k ∈ K)

sp
e(x|v) = se(x|v) for other emitting statesv.

We also define∆e(k) for k ∈ K as follows

∆e(k) = max
x

„
max

xp

[se(x|v, xp)]−min
xp

[se(x|v, xp)]

«
. (2)

In the second place, the transition score of the profile-HMM for a
transition from statev to statew is chosen as follows

sp
t (v, w) =

8>>><>>>:
st(v, Dk|m = 0) w = Dk (k ∈ K)

st(v, Mk|m = 1) w = Mk (k ∈ K)

minm st(v, Ik−1|m) w = Ik−1 (k ∈ K)

st(v, w) otherwise.

In addition to this, we define∆t(k) for k ∈ K

∆t(k) =
“
max

m
[st(v, Ik−1|m)]−min

m
[st(v, Ik−1|m)]

”
. (3)

Finally, we choose the threshold of the pre-screening filter to be
λp = λ−∆, where∆ =

P
k∈K [∆e(k) + ∆t(k)].



3.2. No degradation in the prediction accuracy

Based on the pre-screening filter constructed as described in Sec. 3.1,
we can compute the sequence-level similarity score as follows

Sp(x, Θp) = max
y

Sp(x,y|Θp) = Sp(x,y∗|Θp), (4)

wherey∗ is the optimal state sequence. Using the score in (4) with
the thresholdλp guarantees that there will be no loss in the predic-
tion accuracy. This can be shown as follows.

Theorem For an observed sequencex, if the scoreSp(x, Θp)
computed from the pre-screening filter is smaller thanλp, its score
S(x, Θ) from the original profile-csHMM cannot exceedλ.

Proof If Sp(x, Θp) < λp, we have

max
y∈Y

Sp(x,y|Θp) ≤ max
y

Sp(x,y|Θp) < λp,

whereY is the set of all feasible state sequences in the original
profile-csHMM. Then we have

S(x, Θ) = max
y

S(x,y|Θ) = max
y∈Y

S(x,y|Θ)

≤ max
y∈Y

Sp(x,y|Θp)| {z }
<λp

+ max
y∈Y

h
S(x,y|Θ)− Sp(x,y|Θp)

i
| {z }

≤∆

< (λ−∆) + ∆ = λ. �

This shows that the pre-screening filter will reject only those se-
quences that are guaranteed to be rejected by the original profile-
csHMM, hence there will be no degradation in the prediction accu-
racy.

4. EXPERIMENTAL RESULTS

To demonstrate the proposed idea, we carried out an experiment
using real RNA sequences. We first constructed a profile-csHMM
for the CORONA-PK3 RNA family in the Rfam database [8].5 Note
that the secondary structure of CORONA-PK3 contains pseudoknots,
hence they cannot be modeled using CMs (or SCFGs). Based on
the constructed profile-csHMM, we have built a profile-HMM pre-
screening filter by following the procedure elaborated in Sec. 3.

After constructing the models, we evaluated the performance of
the profile-csHMM search and that of the proposed pre-screening
approach. For evaluation, we used a database that consists of real
CORONA-PK3 RNA sequences and 10,000 random RNA sequences.
As expected, the pre-screening filter did not miss any RNA that was
reported as a “match” by the original profile-csHMM. Consequently,
the prediction accuracies of both methods were identical. The aver-
age CPU time used by the pre-screening filter to compute the similar-
ity scoreSp(x, Θp) was 0.0093 sec, which is much smaller than 28.1
sec of the profile-csHMM.6 The rejection rate of the pre-screening
filter was around 98.8%, hence only 1.2% of the inspected RNAs
was passed to the profile-csHMM in the second stage. As a result,
the average CPU time used by the proposed method was around 0.34
sec, which is around eighty times faster than the search method based
on a profile-csHMM alone.

5For constructing the model, we used the ‘seed alignment’ which provides
a reasonably reliable structural annotation of the given RNA family.

6We used a fixed search region size ofD = 7.

It is important to note that the rejection rate of the pre-screening
filter has a crucial impact on the overall reduction in the search time.
Ideally, the pre-screening filter should reject most sequences that will
be rejected by the profile-csHMM, and pass only a small fraction
to the second stage for further inspection. However, there can be
also occasions when the rejection rate is quite small, in which case
the reduction in the search time will not be significant. For many
applications, the criterion used in Sec. 3 for deriving the parameters
of the pre-screening filter and the thresholdλp will be too stringent,
and it may be beneficial to relax it a little bit to make the search
faster, at a slight loss of the prediction accuracy.

5. CONCLUDING REMARKS

In this paper, we proposed a method that can make a database search
based on a profile-csHMM significantly faster. The proposed method
uses a pre-screening filter based on profile-HMMs, whose computa-
tional complexity is much lower than that of the profile-csHMMs.
As shown in the paper, this pre-screening filter rejects only those
sequences that are guaranteed to be rejected by the original profile-
csHMM. This leads to a considerable reduction in the overall search
time without any degradation in the prediction accuracy of the search.
Important topics for future research include optimizing the parame-
ters of the pre-screening filter to reduce the search time further with-
out affecting the prediction accuracy, and finding heuristic methods
for choosing the filter parameters that will make the search even
faster with a small trade-off in the prediction accuracy.
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